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ABSTRACT

Tracking time-varying signals is an important task for prac-
tical systems working with large discretized domains. Un-
der such settings, sparsity-based approaches improve track-
ing accuracy since typically few targets appear in the scene
(i.e. few locations in the discretized space are occupied).
Discretization introduces a unique challenge: the traditional
£,-norm dynamic constraints produce significant errors when
there is even a small spatial mismatch between the predicted
and true state. To overcome this, we present a tracking al-
gorithm leveraging concepts from optimal transport, namely
utilizing the earth-movers distance (EMD) as a dynamic reg-
ularizer to the ¢;-regularized inference problem (i.e., LASSO
[1], or BPDN [2]). We extend the problem formulation to
complex valued signals and modify the optimization program
to reduce the computational burden. We demonstrate the ef-
ficacy of our approach in imaging and frequency tracking ap-
plications.

Index Terms— Dynamic Filtering, Earth-mover’s Dis-
tance, Compressive Sensing, Kalman Filtering

1. INTRODUCTION

Tracking a temporally changing signal is a classical problem
in signal processing, often called dynamic filtering. Dynamic
filtering combines noisy measurements of a time-varying sig-
nal with a predicted estimate, to accurately infer the new un-
derlying signal. In classical tracking literature, the celebrated
Kalman filter [3] provides optimal and efficient tracking un-
der Gaussian model assumptions on the signal, measurement
and dynamic model mismatch.

Another popular and more recent approach to tracking
has been centered around the notion of exploiting sparse
signal structure to regularize inverse problems [4, 5, 6, 7,
8,9, 10, 11]. Numerous sparsity-aware tracking algorithms
incorporate dynamic structure using the idea of prediction
consistency via an £,-norm metric to encode the notion of
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distance between the prediction and the estimate. In some ap-
plications however, £,-norm metrics can disproportionately
penalize “good” predictions that contain just small spatial
mismatches. Consider, for example, the discretized scenario
where a location mismatch of 1 pixel from its true location
yields the same £,,-norm error as a case that is mismatched by
10 pixel locations.

To alleviate the problem of spatial insensitivity in £,-norm
based approaches, we leverage concepts from optimal trans-
port (OT) which provides a natural geometric framework to
proportionally penalize on spatial mismatches to robustly in-
corporate dynamical (predictive) information. In particular,
we describe a tracking algorithm that uses the unbalanced
earth-mover’s distance (EMD) [12, 13] as a regularizer to in-
fuse dynamical information into the tracking algorithm. The
result is a new tracking framework we call EMD-regularized
BPDN, or EMD-BPDN. We expand on the work discussed
in [14] for nonnegative signals to allow for complex-valued
signals. We further modify the formulation to remove a non-
linear constraint and in turn reduce computational complexity.
Finally, we empirically demonstrate improvements due to the
EMD-regularizer over current methods via target tracking and
frequency tracking simulations.

2. BACKGROUND

2.1. Dynamic Filtering

Formally stated, an unknown signal ,, € R at time n may
be observed through a measurement system

Yn = Anx, + €p, (1)

where A,, € RM*N is a measurement matrix, €, € RM
represents measurement noise, and y,, € R are the resulting
linear measurements. With some knowledge of the dynamical
system governing the evolution of x,,, we can linearly model
dynamics as

Ty = GpTp_1+ Uy, 2

where G,, € RN*N describes the dynamics and v, the
model error, sometimes called the innovations.



The classical Kalman filter [3] may be concisely formu-
lated as a regularized least-squares problem

B = argmin [y — Anal; 5, +
T

& — Grn 1 g,(Qn+G”Pu,1GZ)} )
where Z,,_1 and P,,_; are estimates of the previous time step
and its covariance, and Q),, and R, are the covariances for the
innovations and measurement noise, with the following norm-
notation [[v[|, o = Vv T Cv for C € {z € RVN*N = 0}.
Under a linear model (on the measurements and dynamics)
with Gaussian assumptions (on the signal, innovations and
measurement noise), the Kalman filter is guaranteed to con-
verge to the same solution as if all past data was used at once.

Sparsity models, however, differ substantially from Gaus-
sian assumptions and instead, are better modeled with high-
kurtosis distributions such as the Laplace distribution [15].
Under such sparsity models, we express x,, as a linear com-
bination of just a few elements from a large dictionary. For-
mally, ,, = ®a,,, where the columns of ® contain the dic-
tionary elements, and a,, is a sparse vector, i.e. only a small
subset of its coefficients are non-zero.

A popular sparsity algorithm for inferring coefficients un-
der noisy measurements is basis pursuit denoising (BPDN)
[2], also known as the LASSO [1]:

G, = argmin (|ly, — Au®al} + Aflal,). @)

The minimization seeks to find the Pareto frontier on mea-
surement fidelity versus coefficient sparsity using a trade-off
parameter )\, but does not consider dynamic information.
One dynamical extension to BPDN is cast with an addi-
tional £,-norm tracking regularizer (BPDN-DF) [11, 16]:

a, = argmin |y, — A, ®al; + A |al,
a
+'Y Hq’a - Gnq)an—lnz . (5)

This program incorporates dynamics by penalizing disagree-
ments between the dynamics model and the current signal es-
timate, thereby encouraging the estimations to agree with the
predictions. The free parameter ~y trades-off between the dy-
namics prediction and the BPDN solution.

More recent methods, such as re-weighted ¢; dynamic fil-
tering (RWL1-DF), [16] have incorporated second order spar-
sity statistics into the model, by iteratively solving a weighted
BPDN estimate

a, = argmin ||y, — AntﬁaHg + X E Ailai|,  (6)
a .
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and a weight update that fuses dynamical and measurement
information via

(07

)\i - =~ T ~ ST
B+ [an[i)] + £ (@71 GrPan 1)

(N

with free parameters «, 3, k. This model is more robust be-
cause it preserves sparsity deviations on dynamic model er-
rors [16]. Although BPDN-DF and RWLI1-DF exploit dy-
namical information, they have a strict spatial dependence on
the previous time-step’s estimate (e.g., £,-norm error metric),
causing them to be sensitive to spatial mismatches.

2.2. Earth Mover’s Distance

The earth mover’s distance (EMD) was introduced in [12] and
first applied to the machine learning task of histogram match-
ing, but has since been applied to solving inverse problems
[17, 18, 19]. The classical balanced EMD deals with trans-
portation between two valid probabilities of equal masses,
while the unbalanced setting deals with non-equal masses.
The latter setting is sometimes called the optimal partial
transport problem, with associated analyses found in [20, 21].
More generally, the masses need not be probabilities (e.g.,
they may represent intensities of pixels in images), therefore
the unbalanced EMD can be useful in a variety of applica-
tions.

The EMD between two signals « and &, denoted by
demp (x, &) may be stated as solving the following con-
strained linear optimization program

mfi‘nZFijrij st. Fy;; >0
ij
ZFz‘j <z
J
> Fi <3
i
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iJ % J
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The EMD may be interpreted as flows F;; of “mass” travel-
ling between pixel x; and Z;, with r;; denoting its associated
displacement cost. The second and third constraints describe
the conservation of mass between x and & while the final con-
straint motivates flows (thereby preventing the trivial solution
of zero flows).

The EMD has been used in BPDN in place of the ¢, norm
[17], or to regularize differences between columns of a sparse
matrix [18], but has not thus far been explored for tracking
applications.

3. EMD AS A TRACKING REGULARIZER

We can incorporate the EMD into the tracking problem by
replacing the £, dynamics term in (5):

x, = argmin Hyn - Aang + A ||£L'H1 + deEMD(w’ 53)’
x



where & = G, &,_1 represents the signal predicted from the
dynamics model. Intuitively, the EMD dynamics penalty is
more tolerant toward inaccuracies in the locations of the ac-
tive elements in the signal compared to £,,-based regularizers.

Since evaluation of dgmp(+, -) itself involves solving an
optimization program, we can optimize jointly over the EMD
flows and the signal solution:
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There are two issues with this formulation that limit its util-
ity in practice. First, the non-linearity in the last constraint
complicates the computation of a solution. One way to deal
with this non-linearity (which we explore in [14]) involves
solving the optimization twice, using both possibilities of the
min term. In this work, we introduce a slack variable u to
replace the min. In particular, we replace the last constraint
with three new ones: u < > @, u < > &, and > F = u.
We then introduce an extra term into the objective function to
encourage large values for u.

The second issue with the formulation is that we have thus
far assumed that the elements of x are nonnegative. We would
like to consider the more general signal class € CV, such
as signals represented with Fourier matrices. The natural ex-
tension would be to replace the second and third constraints
with 37, F < [z and 3, I < [%;] respectively. Unfor-
tunately the resulting optimization problem is non-convex.
Instead, we introduce an approximation by decomposing the
real and imaginary parts of the signal into positive and neg-
ative components x, z, " x € R such that x =
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one may verify that Az = A’z’ forall z € C". We can thus

approximate the solution to (9) by solving
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It is important to note that (11) does not solve (9) exactly.
First, we observe that the representation &’ is not unique; for
example, the elements of .. and x,; may both contain non-
zero entries in the same position causing x5 + =, to be a
poor approximation for |R(x)|. However, the sparsity reg-
ularizer serves to discourage such solutions. Second, in the
ideal case where the positive and negative components have
disjoint support (i.e., (1), (zg); = (=), (zn), = 0 for
i1=1,---,N), we have

(20), + (2re) (i), + (i), = [R(@) [+ [S ()| # |l -

Our experiments indicate that this approximate solution to the
tracking problem is still of use in practice.

We end this section with a note on computational com-
plexity. Initial inspection of (11) suggests that we must solve
for N2 flow variables in addition to the original N signal vari-
ables. However, if the predicted solution & is K sparse, then
the inequality Y F' < |Z,| implies that all but K columns of
F are zero, reducing the number of unknown flow variables to
N K. Furthermore, the replacement of the equality constraint
on the flows allows us to solve the problem only once per iter-
ation instead of twice. Future directions for further reducing
the computational cost are addressed in the discussion.

4. RESULTS

To demonstrate the efficacy of EMD regularized dynamical
filtering, we explore two applications: object tracking in a
video stream and frequency tracking in a time series.

4.1. Target Tracking

First, we consider the scenario where a sparse collection of
objects move throughout a scene. Our dataset consists of
synthetically generated frames consisting of K active pixels
which move randomly to adjacent locations at each time step.



The dynamics model predicts the next frame to be the same
as the current estimate, i.e. G,, = I. We quantify the perfor-
mance of BPDN, BPDN-DF, RWL1-DF, and BPDN-EMD at
various sparsity levels using the Donoho-Tanner phase transi-
tion diagrams shown in Figure 1. BPDN-EMD shows supe-
rior performance in the regime corresponding to fewer mea-
surements or more active pixels.
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Fig. 1. One-step recovery results as Donoho-Tanner phase
transition diagram. Here, N = 100 and each point value
in each image was generated from the mean rMSE of 10 in-
dependent one-step recovery simulations (i.e., the lower the
better). These diagrams illustrate EMD-regularized BPDN’s
superior rMSE performance in the space of M, K, as com-
pared to other algorithms.

4.2. Frequency Tracking

The next experiment showcases the utility of the formulation
of BPDN-EMD for complex valued signals by considering a
frequency tracking application. We generate signals that con-
sist of three frequencies which drift according to Brownian
motion. We observe a noisy time-series of data and wish to
recover the spectrum. The traditional spectrogram based on
the Short-Time Fourier Transform is unable to simultaneously
capture small changes in frequency and fine scale temporal
dynamics. Instead, we employ sparse recovery methods with
an overcomplete Discrete Fourier Transform (DFT) matrix,
ie., Ay = e?™8/N for] =0,--- ,M—1,k=0,--- ,N—1
where M < N. The oversampling factor N/M controls how
much additional frequency resolution the representation cap-
tures compared to the standard DFT matrix.

Our error metric is computed as follows: for each time
sample, we project the ground truth frequencies and the spec-
trum estimate onto a high resolution grid. Each frequency
present in the ground truth signal occupies a single element on
this grid, whereas the frequency range covered by a spectral
bin in the signal estimate occupies multiple elements (more

for larger bins and fewer for smaller bins.) We then compute
the normalized EMD between the ground truth and the signal
estimate on this high frequency grid. The aggregate error is
calculated by summing these distances over all time samples.
Higher resolution estimates are more concentrated on the fre-
quency grid, so less “work” must be done to transform them
into the single peaks representing the ground truth. Thus, this
metric assigns higher error to spectra with lower frequency
resolution. Furthermore, since we use the EMD, estimates
with frequencies close to the ground truth are assigned lower
error than those that are far away. Figure 2 illustrates the ben-
efit of using the EMD as a tracking regularizer.
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Fig. 2. Integrated EMD error. Error bars indicate confidence
intervals computed using 150 trials. All sparse methods pro-
duce lower error than the spectrogram. The addition of dy-
namics information allows RWL1-DF and EMD-BPDN to
outperform standard BPDN. EMD-BPDN is best able to take
advantage of the dynamical model and thus produces the low-
est error.

5. CONCLUSIONS

We investigate here how optimal transport can improve the
performance of sparsity-aware dynamic filtering. Specifi-
cally, we describe an algorithm that exploits the EMD (or
optimal partial transport) as a dynamical regularizer and em-
pirically characterize its performance. We conclude that an
EMD regularizer has the potential to improve performance in
image processing and frequency tracking applications. Thus
it a worthwhile goal to further explore EMD-regularized
trackers in related fields such as computer vision. We formu-
late our algorithm as a convex optimization program that can
handle general cost matrices, with strategies to reduce com-
putational burden when the signal is sparse. In future work,
we will study how to further improve computational effi-
ciency by exploiting recent advances in the optimal transport
literature.
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